
CityJSON Documentation
Release 2.3.0

3D geoinformation (TU Delft)

Mar 29, 2022

Contents

1 Installation 3
1.1 Windows executable . 3
1.2 macOS & Linux: you need to compile . 3
1.3 Web-application . 3
1.4 Using val3dity as a library . 3
1.5 Python bindings . 3

2 Using val3dity 5
2.1 How to run val3dity? . 5
2.2 Accepted input . 6
2.3 How are 3D primitives validated? . 6
2.4 Options for the validation . 7

3 Errors 11
3.1 101 – TOO_FEW_POINTS . 14
3.2 102 – CONSECUTIVE_POINTS_SAME . 14
3.3 103 – RING_NOT_CLOSED . 14
3.4 104 – RING_SELF_INTERSECTION . 15
3.5 201 – INTERSECTION_RINGS . 15
3.6 202 – DUPLICATED_RINGS . 15
3.7 203 – NON_PLANAR_POLYGON_DISTANCE_PLANE . 16
3.8 204 – NON_PLANAR_POLYGON_NORMALS_DEVIATION . 16
3.9 205 – POLYGON_INTERIOR_DISCONNECTED . 16
3.10 206 – INNER_RING_OUTSIDE . 17
3.11 207 – INNER_RINGS_NESTED . 17
3.12 208 – ORIENTATION_RINGS_SAME . 17
3.13 300 – NOT_VALID_2_MANIFOLD . 17
3.14 301 – TOO_FEW_POLYGONS . 18
3.15 302 – SHELL_NOT_CLOSED . 18
3.16 303 – NON_MANIFOLD_CASE . 18
3.17 305 – MULTIPLE_CONNECTED_COMPONENTS . 19
3.18 306 – SHELL_SELF_INTERSECTION . 19
3.19 307 – POLYGON_WRONG_ORIENTATION . 19
3.20 401 – INTERSECTION_SHELLS . 19
3.21 402 – DUPLICATED_SHELLS . 19
3.22 403 – INNER_SHELL_OUTSIDE . 20
3.23 404 – SOLID_INTERIOR_DISCONNECTED . 20

i

3.24 405 – WRONG_ORIENTATION_SHELL . 20
3.25 501 – INTERSECTION_SOLIDS . 20
3.26 502 – DUPLICATED_SOLIDS . 21
3.27 503 – DISCONNECTED_SOLIDS . 21
3.28 601 – BUILDINGPARTS_OVERLAP . 21
3.29 609 – CITYOBJECT_HAS_NO_GEOMETRY . 21
3.30 701 – CELLS_OVERLAP . 22
3.31 702 – DUAL_VERTEX_OUTSIDE_CELL . 22
3.32 703 – PRIMAL_DUAL_XLINKS_ERROR . 22
3.33 704 – PRIMAL_DUAL_ADJACENCIES_INCONSISTENT . 22
3.34 901 – INVALID_INPUT_FILE . 22
3.35 902 – EMPTY_PRIMITIVE . 22
3.36 903 – WRONG_INPUT_PARAMETERS . 22
3.37 904 – FORMAT_NOT_SUPPORTED . 22
3.38 999 – UNKNOWN_ERROR . 22

4 Definitions 23
4.1 ISO19107 primitives . 23
4.2 Aggregates & composites . 23
4.3 Overview of 3D primitives handled . 24
4.4 Polygon . 24
4.5 MultiSurface . 25
4.6 CompositeSurface . 25
4.7 Solid . 25
4.8 MultiSolid . 27
4.9 CompositeSolid . 27

5 FAQ 29
5.1 Who validates the validator, huh? . 29
5.2 How to interpret the report? . 30
5.3 I get many errors 203 and 204, but my planes look planar to me. Why is that? 31
5.4 I don’t see all the errors in my solid . 31
5.5 I’m sure my 3D primitive is valid, but the validator says that something is wrong 31
5.6 Do you validate the topological relationships between the solids? 31
5.7 The IDs for the shells and surfaces in the report, are they 0-based or 1-based? 31
5.8 Where can I get files containing Solids or CompositeSolid? 32

6 Contact 33

ii

CityJSON Documentation, Release 2.3.0

(version 2.3.0)

val3dity—pronounced ‘val-three-dity’—allows us to validate 3D primitives according to the international standard
ISO19107. Think of it as PostGIS ST_IsValid, but for 3D primitives (PostGIS is only for 2D ones).

In short, it verifies whether a 3D primitive respects the definition as given in ISO19107 and GML/CityGML. The
validation of the following 3D primitives is fully supported:

• MultiSurface

• CompositeSurface

• Solid

• MultiSolid

• CompositeSolid

Unlike many other validation tools in 3D GIS, inner rings in polygons/surfaces are supported and so are cavities in
solids (also called voids or inner shells). However, as is the case for many formats used in practice, only planar and
linear primitives are allowed: no curves or spheres or other parametrically-modelled primitives are supported. There
is no plan to support these geometries.

val3dity accepts as input:

• CityJSON

• tu3djson

• OBJ

• OFF

• IndoorGML

For the CityJSON and IndoorGML formats, extra validations (specific to the format) are performed, eg the overlap
between different parts of a building, or the validation of the navigation graph in IndoorGML.

Note: If you use val3dity in a scientific context, please cite these articles:

Ledoux, Hugo (2019). val3dity: validation of 3D GIS primitives according to the international standards. Open
Geospatial Data, Software and Standards, 3(1), 2018, pp.1 [DOI]

Ledoux, Hugo (2013). On the validation of solids represented with the international standards for geographic infor-
mation. Computer-Aided Civil and Infrastructure Engineering, 28(9):693-706. [PDF] [DOI]

Content

Contents 1

http://postgis.net/docs/ST_IsValid.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=26012
http://www.cityjson.org
https://github.com/tudelft3d/tu3djson
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/OFF_(file_format)
http://indoorgml.net/
http://dx.doi.org/10.1186/s40965-018-0043-x
https://3d.bk.tudelft.nl/hledoux/pdfs/13_cacaie.pdf
http://dx.doi.org/10.1111/mice.12043

CityJSON Documentation, Release 2.3.0

2 Contents

CHAPTER 1

Installation

1.1 Windows executable

For Windows, we offer an executable, and there’s a Visual Studio project code in the folder vs_build, although
installing the dependencies is slightly more complex than for macOS/Linux.

1.2 macOS & Linux: you need to compile

The details to compile and use val3dity are on GitHub.

1.3 Web-application

If you don’t want to go through the troubles of compiling and/or installing val3dity, we suggest you use the web
application. Simply upload your file to our server and get a validation report back. We delete the file as soon as it has
been validated. However, a file is limited to 50MB.

1.4 Using val3dity as a library

val3dity can be compiled and used as a library, see the instructions.

Also, there is a simple example of how to use it in ./demo_lib with instructions to compile it.

1.5 Python bindings

It is possible to use val3dity with Python, see val3ditypy.

3

https://github.com/tudelft3d/val3dity/releases
https://github.com/tudelft3d/val3dity#installation-of-the-command-line-tool
http://geovalidation.bk.tudelft.nl/val3dity
http://geovalidation.bk.tudelft.nl/val3dity
https://github.com/tudelft3d/val3dity#using-val3dity-as-a-library
https://github.com/tudelft3d/val3ditypy/

CityJSON Documentation, Release 2.3.0

4 Chapter 1. Installation

CHAPTER 2

Using val3dity

Note: val3dity is a command-line program only, there is no graphical interface. Alternatively, you can use the web
application.

2.1 How to run val3dity?

To execute val3dity and see its options:

$ val3dity --help

To validate all the 3D primitives in a CityJSON file and see a summary output:

$ val3dity my3dcity.city.json

To validate each 3D primitive in input.city.json, and use a tolerance for testing the planarity of the surface of
20cm (0.2):

$ val3dity --planarity_d2p_tol 0.2 input.city.json

To validate an OBJ file and verify whether the 3D primitives from a Solid (this is the default):

$ val3dity input.obj

The same file could be validated as a MultiSurface, ie each of its surface are validated independently

$ val3dity -p MultiSurface input.obj

5

http://geovalidation.bk.tudelft.nl/val3dity
http://geovalidation.bk.tudelft.nl/val3dity

CityJSON Documentation, Release 2.3.0

2.2 Accepted input

val3dity accepts as input:

• CityJSON

• tu3djson

• OBJ

• OFF

• IndoorGML

For CityJSON files, all the City Objects (eg Building or Bridge) are processed and their 3D primitives are vali-
dated. The 3D primitives are bundled under their City Objects in the report. If your CityJSON contains Buildings
with one or more BuildingParts, val3dity will perform an extra validation: it will ensure that the 3D primitives do
not overlap (technically that the interior of each BuildingPart does not intersect with the interior of any other part
of the Building). If there is one or more intersections, then 601 – BUILDINGPARTS_OVERLAP will be reported.

For IndoorGML files, all the cells (in the primal subdivisions, the rooms) are validated individually, and then some
extra validation tests are run on the dual navigation network. All errors 7xx are related specifically to IndoorGML.

For OBJ and OFF files, each primitive will be validated according to the ISO19107 rules. One must specify how the
primitives should be validated (MultiSurface, CompositeSurface, or Solid). In an OBJ file, if there is more
than one object (lines starting with “o”, eg o myobject), each will be validated individually. Observe that OBJ files have
no mechanism to define inner shells, and thus a solid will be formed by only its exterior shell. Validating one primitive
in an OBJ as a MultiSurface (-p MultiSurface option) will individually validate each surface according to the
ISO19107 rules, without ensuring that they form a 2-manifold. If your OBJ contains triangles only (often the case),
then using the option -p MultiSurface is rather meaningless since most likely all your triangles are valid. Validation
could however catch cases where triangles are collapsed to a line/point. Validating it as a solid verifies whether the
primitive is a 2-manifold, ie whether it is closed/watertight and whether all normals are pointing outwards.

2.3 How are 3D primitives validated?

All primitives are validated hierarchically, for instance:

1. the lower-dimensionality primitives (the polygons) are validated by projecting them to a 2D plane (obtained
with least-square adjustment) and using GEOS;

2. then these are assembled into shells/surfaces and their validity is analysed, as they must be watertight, no self-
intersections, orientation of the normals must be consistent and pointing outwards, etc;

3. then the Solids are validated

4. finally, for CompositeSolids the interactions between the Solids are analysed.

This means that if one polygon of a Solid is not valid, the validator will report that error but will not continue the
validation (to avoid “cascading” errors).

The formal definitions of the 3D primitives, along with explanations, are given in Definitions.

6 Chapter 2. Using val3dity

http://www.cityjson.org
https://github.com/tudelft3d/tu3djson
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/OFF_(file_format)
http://indoorgml.net/
http://trac.osgeo.org/geos/

CityJSON Documentation, Release 2.3.0

2.4 Options for the validation

2.4.1 -h, --help

Display usage information and exit.

2.4.2 --ignore204

Ignore the error 204 – NON_PLANAR_POLYGON_NORMALS_DEVIATION.

2.4.3 --overlap_tol

Tolerance for testing the overlap between primitives in CompositeSolids and BuildingParts
default = -1 (disabled)

The maximum allowed distance for overlaps. Helps to validate the topological relationship between Solids forming
a CompositeSolid, the BuildingParts of a building in CityJSON, or the cells in IndoorGML. The tolerance
--overlap_tol 0.05 means that each of the solids is given a 0.05unit fuzzy boundary (thus 5cm if meters are
the unit of the input), and thus this is considered when validating. 0.0unit means that the original boundaries are
used. Using an overlap tolerance significantly reduces the speed of the validator, because rather complex geometric
operations are performed.

2.4. Options for the validation 7

CityJSON Documentation, Release 2.3.0

2.4.4 --planarity_d2p_tol

Tolerance for planarity based on a distance to a plane
default = 0.01

The distance between every point forming a surface and a plane must be less than --planarity_d2p_tol
(eg 1cm, which is the default). This plane is fitted with least-square adjustment, and the dis-
tance between each of the point to the plane is calculated. If this distance is larger than the de-
fined value, then 203 – NON_PLANAR_POLYGON_DISTANCE_PLANE is reported. Read more at 203 –
NON_PLANAR_POLYGON_DISTANCE_PLANE.

Note: Planarity is defined with two tolerances: --planarity_d2p_tol and --planarity_n_tol.

8 Chapter 2. Using val3dity

CityJSON Documentation, Release 2.3.0

2.4.5 --planarity_n_tol

Tolerance for planarity based on normals deviation
default = 20 (degree)

Helps to detect small folds in a surface. --planarity_n_tol refers to the normal of each triangle after
the surface has been triangulated. If the triangle normals deviate from each other more than the given toler-
ance, then error 204 – NON_PLANAR_POLYGON_NORMALS_DEVIATION is reported. Read more at 204 –
NON_PLANAR_POLYGON_NORMALS_DEVIATION.

Note: Planarity is defined with two tolerances: --planarity_d2p_tol and --planarity_n_tol.

2.4.6 -p, --primitive

Which geometric primitive to validate. Only relevant for OBJ/OFF, because for CityJSON all primitives are
validated. Read more geometric primitives at Definitions.
One of Solid, CompositeSurface, MultiSurface.

2.4.7 -r, --report

Outputs the validation report to the file given. The report is in JSON file format, and can be used to produce nice
reports automatically or to extract statistics. Use val3dity report browser with your report.

2.4.8 --listerrors

Outputs a list of the val3dity errors.

2.4. Options for the validation 9

http://geovalidation.bk.tudelft.nl/val3dity/browse/

CityJSON Documentation, Release 2.3.0

2.4.9 --snap_tol

Tolerance for snapping vertices that are close to each others
default = 0.001

Geometries modelled in GML store amazingly very little topological relationships. A cube is for instance represented
with 6 surfaces, all stored independently. This means that the coordinates xyz of a single vertex (where 3 surfaces
“meet”) is stored 3 times. It is possible that these 3 vertices are not exactly at the same location (eg (0.01, 0.5, 1.0),
(0.011, 0.49999, 1.00004) and (0.01002, 0.5002, 1.0007)), and that would create problems when validating since there
would be holes in the cube for example. The snap tolerance basically gives a threshold that says: “if 2 points are closer
then X, then we assume that they are the same”. It’s setup by default to be 1mm.

2.4.10 --verbose

The validation outputs to the console the status of each step of the validation. If this option is not set, then this goes to
a file val3dity.log in the same folder as the executable.

2.4.11 --version

Display version information and exit.

10 Chapter 2. Using val3dity

11

CityJSON Documentation, Release 2.3.0

CHAPTER 3

Errors

12 Chapter 3. Errors

CityJSON Documentation, Release 2.3.0

• 101 – TOO_FEW_POINTS

• 102 – CONSECUTIVE_POINTS_SAME

• 103 – RING_NOT_CLOSED

• 104 – RING_SELF_INTERSECTION

• 201 – INTERSECTION_RINGS

• 202 – DUPLICATED_RINGS

• 203 – NON_PLANAR_POLYGON_DISTANCE_PLANE

• 204 – NON_PLANAR_POLYGON_NORMALS_DEVIATION

• 205 – POLYGON_INTERIOR_DISCONNECTED

• 206 – INNER_RING_OUTSIDE

• 207 – INNER_RINGS_NESTED

• 208 – ORIENTATION_RINGS_SAME

• 300 – NOT_VALID_2_MANIFOLD

• 301 – TOO_FEW_POLYGONS

• 302 – SHELL_NOT_CLOSED

• 303 – NON_MANIFOLD_CASE

• 305 – MULTIPLE_CONNECTED_COMPONENTS

• 306 – SHELL_SELF_INTERSECTION

• 307 – POLYGON_WRONG_ORIENTATION

• 401 – INTERSECTION_SHELLS

• 402 – DUPLICATED_SHELLS

• 403 – INNER_SHELL_OUTSIDE

• 404 – SOLID_INTERIOR_DISCONNECTED

• 405 – WRONG_ORIENTATION_SHELL

• 501 – INTERSECTION_SOLIDS

• 502 – DUPLICATED_SOLIDS

• 503 – DISCONNECTED_SOLIDS

• 601 – BUILDINGPARTS_OVERLAP

• 609 – CITYOBJECT_HAS_NO_GEOMETRY

• 701 – CELLS_OVERLAP

• 702 – DUAL_VERTEX_OUTSIDE_CELL

• 703 – PRIMAL_DUAL_XLINKS_ERROR

• 704 – PRIMAL_DUAL_ADJACENCIES_INCONSISTENT

• 901 – INVALID_INPUT_FILE

• 902 – EMPTY_PRIMITIVE

13

CityJSON Documentation, Release 2.3.0

• 903 – WRONG_INPUT_PARAMETERS

• 904 – FORMAT_NOT_SUPPORTED

• 999 – UNKNOWN_ERROR

3.1 101 – TOO_FEW_POINTS

A ring should have at least 3 points. For GML rings, this error ignores the fact that the first and the last point of a ring
are the same (see 103 – RING_NOT_CLOSED), ie a GML ring should have at least 4 points.

This ring is for instance invalid:

<gml:LinearRing>
<gml:pos>0.0 0.0 0.0</gml:pos>
<gml:pos>1.0 0.0 0.0</gml:pos>
<gml:pos>0.0 0.0 0.0</gml:pos>

</gml:LinearRing>

3.2 102 – CONSECUTIVE_POINTS_SAME

Points in a ring should not be repeated (except first-last in case of GML, see 103 – RING_NOT_CLOSED). This error
is for the common error where 2 consecutive points are at the same location. Error 104 is for points in a ring that are
repeated, but not consecutive.

This ring is for instance invalid:

<gml:LinearRing>
<gml:pos>0.0 0.0 0.0</gml:pos>
<gml:pos>1.0 0.0 0.0</gml:pos>
<gml:pos>1.0 0.0 0.0</gml:pos>
<gml:pos>1.0 1.0 0.0</gml:pos>
<gml:pos>0.0 1.0 0.0</gml:pos>
<gml:pos>0.0 0.0 0.0</gml:pos>

</gml:LinearRing>

3.3 103 – RING_NOT_CLOSED

This applies only to GML rings, in CityJSON/OBJ/OFF it is ignored. The first and last points have to be identical (at
the same location). This is verified after the points have been merged with the –snap_tol option.

This ring is for instance invalid:

<gml:LinearRing>
<gml:pos>0.0 0.0 0.0</gml:pos>
<gml:pos>1.0 0.0 0.0</gml:pos>
<gml:pos>1.0 1.0 0.0</gml:pos>
<gml:pos>0.0 1.0 0.0</gml:pos>

</gml:LinearRing>

14 Chapter 3. Errors

CityJSON Documentation, Release 2.3.0

3.4 104 – RING_SELF_INTERSECTION

A ring should be simple, ie it should not self-intersect. The self-intersection can be at the location of an explicit point,
or not. This case includes rings that are (partly) collapsed to a line for instance.

Observe that self-intersection in 3D and 2D is different, ie a bowtie (the first polygon below) has a self-intersection
“in the middle” in 2D, but in 3D if the 4 vertices are not on a plane then there is no intersection.

A ring is self-intersecting if its projection to the best-fitted plane (done with least-square) through the vertices of
the polygon containing the ring has a self-intersection. This rule is there because if it is not possible to project the
rings/polygons to a plane, then it is not possible to triangulate it (which is necessary, at least by val3dity, to validate
3D primitives). In the figure below, the left example shows one polygon (the top one) where a projection (let say to
the xy-plane) would not cause any self-intersection. However, the right example does cause a self-intersection. It is
the same is the vertices b and c are projected to the same location: a self-intersection is also returned.

3.5 201 – INTERSECTION_RINGS

Two or more rings intersect, these can be either the exterior ring with an interior ring or only interior rings.

3.6 202 – DUPLICATED_RINGS

Two or more rings are identical.

3.4. 104 – RING_SELF_INTERSECTION 15

CityJSON Documentation, Release 2.3.0

3.7 203 – NON_PLANAR_POLYGON_DISTANCE_PLANE

A polygon must be planar, ie all its points (used for both the exterior and interior rings) must lie on a plane. To verify
this, we must ensure that the the distance between every point and a plane is less than a given tolerance (eg 1cm). In
the validator, this plane is fitted with least-square adjustment, and the distance between each of the point to the plane
is calculated. If the distance is larger than the given threshold then an error is reported. The distance to the plane, if
larger than the threshold, is also reported in the report.

3.8 204 – NON_PLANAR_POLYGON_NORMALS_DEVIATION

To ensure that small folds on a surface are detected. Consider the Solid below, the top surface containing 8 vertices
(abcdefgh) is clearly non-planar since there is a vertical “fold” in the middle. The normal of the sub-surface abgh
points upwards, while that of bcfg points in a different angle. But this surface would not be detected by the 203 –
NON_PLANAR_POLYGON_DISTANCE_PLANE test (with a tolerance of 1cm for instance) since all the vertices are
within that threshold. Thus, another requirement is necessary: the distance between every point forming a polygon and
all the planes defined by all possible combinations of 3 non-collinear points is less than a given tolerance. In practice
it can be implemented with a triangulation of the polygon (any triangulation): the orientation of the normal of each
triangle must not deviate more than than a certain user-defined tolerance.

A surface is first checked for 203 – NON_PLANAR_POLYGON_DISTANCE_PLANE, if it’s valid then 204 –
NON_PLANAR_POLYGON_NORMALS_DEVIATION is checked. However, it is only checked if there are no
104 – RING_SELF_INTERSECTION in the polygon, since otherwise it’s not possible to triangulate the polygon.
In the figure below, the Solid on the left could be tested for 204, while the right one couldn’t (but an 104 –
RING_SELF_INTERSECTION would be returned).

By definition, if 204 – NON_PLANAR_POLYGON_NORMALS_DEVIATION is reported then all the vertices are
within 1cm (or the tolerance you gave as input), thus you wouldn’t be able to visualise them. Also, 204 usually
means that the vertices in the polygon are very close to each other (say 0.1mm), and thus it’s easy to get a large
deviation (say 80 degree; the report contains the actual deviation).

3.9 205 – POLYGON_INTERIOR_DISCONNECTED

The interior of a polygon must be connected. The combination of different valid rings can create such an error, for
example:

16 Chapter 3. Errors

CityJSON Documentation, Release 2.3.0

3.10 206 – INNER_RING_OUTSIDE

One or more interior rings are located completely outside the exterior ring. If the interior ring intersects the exterior
ring (even at only one point), then error 201 – INTERSECTION_RINGS should be returned.

3.11 207 – INNER_RINGS_NESTED

One or more interior ring(s) is(are) located completely inside another interior ring.

3.12 208 – ORIENTATION_RINGS_SAME

The interior rings must have the opposite direction (clockwise vs counterclockwise) when viewed from a given point-
of-view. When the polygon is used as a bounding surface of a shell, then the rings have to have a specified orientation
(see 307/308).

3.13 300 – NOT_VALID_2_MANIFOLD

The shell is not valid, but the exact error (errors 3xx) is not known. This error happens when the construction of the
shell failed for unknown reason. Hopefully you don’t get that error.

3.10. 206 – INNER_RING_OUTSIDE 17

CityJSON Documentation, Release 2.3.0

3.14 301 – TOO_FEW_POLYGONS

A shell should have at least 4 polygons—the simplest volumetric shape in 3D is a tetrahedron.

3.15 302 – SHELL_NOT_CLOSED

The shell must not have ‘holes’, ie it must be ‘watertight’. This refers only to the topology of the shell, not to its
geometry (see 306 – SHELL_SELF_INTERSECTION).

The left solid is invalid, while the right one is valid (since the hole is filled with other polygons):

3.16 303 – NON_MANIFOLD_CASE

Each shell must be simple, ie it must be a 2-manifold. Two cases are possible:

1. An edge of a shell is non-manifold when there are more than 2 incident polygons to it.

2. A vertex is non-manifold when its incident polygons do not form one ‘umbrella’

Notice that this error might be returned for shells having their surfaces that are not consistently oriented (while they
are 2-manifold). Imagine you have a cube with 6 surfaces, if some surfaces have their normal pointing outwards, and
some inwards, then this error might be returned (or 307 – POLYGON_WRONG_ORIENTATION, depending on the
configuration).

18 Chapter 3. Errors

CityJSON Documentation, Release 2.3.0

3.17 305 – MULTIPLE_CONNECTED_COMPONENTS

Polygons that are not connected to the shell should be reported as an error.

3.18 306 – SHELL_SELF_INTERSECTION

If topology of the shell is correct and the shell is closed (thus no error 301/302/303/304/305), it is possible that
the geometry introduces errors, eg intersections. For instance, the topology of both these shells is identical, but the
geometry differs. The left shell is valid while the right one is invalid.

3.19 307 – POLYGON_WRONG_ORIENTATION

If one polygon is used to construct a shell, its exterior ring must be oriented in such as way that when viewed from
outside the shell the points are ordered counterclockwise.

3.20 401 – INTERSECTION_SHELLS

The interior of two or more shells intersect, these can be either the exterior shells with an interior shells or two or more
interior shells. Two shells sharing (part of) a face is also not allowed.

Conceptually the same as 201 – INTERSECTION_RINGS.

3.21 402 – DUPLICATED_SHELLS

Two or more shells are identical in one Solid. Note that for example a MultiSolid is a collection of Solids, but the
topological relationships between them are not prescribed at all, they can be duplicated.

Conceptually the same as 202 – DUPLICATED_RINGS.

3.17. 305 – MULTIPLE_CONNECTED_COMPONENTS 19

CityJSON Documentation, Release 2.3.0

3.22 403 – INNER_SHELL_OUTSIDE

One or more interior shells are located completely outside the exterior shell. If the interior shell intersects the exterior
shell (even at only one point), then error 401 – INTERSECTION_SHELLS should be returned.

Conceptually the same as 206 – INNER_RING_OUTSIDE.

3.23 404 – SOLID_INTERIOR_DISCONNECTED

Conceptually the same as 205 – POLYGON_INTERIOR_DISCONNECTED the configuration of the interior shells
makes the interior of the solid disconnected.

3.24 405 – WRONG_ORIENTATION_SHELL

The polygon/surfaces forming an outer shell should have their normals pointing outwards, and for an interior shell
inwards.

‘Outwards’ is as follows: if a right-hand system is used, ie when the ordering of the points on the surface follows the
direction of rotation of the curled fingers of the right hand, then the thumb points towards the outside. The torus below
shows the correct orientation for some rings of some faces.

Conceptually the same as 208 – ORIENTATION_RINGS_SAME.

3.25 501 – INTERSECTION_SOLIDS

The interior of 2 Solids part of a CompositeSolid intersects.

20 Chapter 3. Errors

CityJSON Documentation, Release 2.3.0

3.26 502 – DUPLICATED_SOLIDS

Two Solids in a CompositeSolid are identical.

3.27 503 – DISCONNECTED_SOLIDS

Two Solids in a CompositeSolid are disconnected.

3.28 601 – BUILDINGPARTS_OVERLAP

Some primitives in a Building and/or BuildingPart have their interior overlapping.

3.29 609 – CITYOBJECT_HAS_NO_GEOMETRY

The CityGML object (a Building, a Bridge, a Road, etc.) has no geometry defined. That is, it has no 3D Primitives
declared as geometry, for instance for a Building there no tags <lod2Solid> or <lod2MultiSurface>. If with
a viewer you can see the geometry of the CityGML object, then that error occurs because the surfaces are only declared
as semantic surfaces (the surfaces are children of the tag <boundedBy>). To circumvent the issue, we advise you to
add a geometry to your objects, this is an error that could affect many processes and software. Another option is to
use the option --geom_is_sem_surfaces which gathers all the semantic surfaces of a City Object and validates
them. We only offer this option as a convenience (and because we are nice people), and we strongly encourage you to
define a geometry.

3.26. 502 – DUPLICATED_SOLIDS 21

CityJSON Documentation, Release 2.3.0

3.30 701 – CELLS_OVERLAP

Two IndoorGML cells overlap with each other. Similar to 601 – BUILDINGPARTS_OVERLAP but for IndoorGML.
The overlap allowed can be controlled with the validation option –overlap_tol.

3.31 702 – DUAL_VERTEX_OUTSIDE_CELL

The dual vertex of an IndoorGML cell is located outside the cell.

3.32 703 – PRIMAL_DUAL_XLINKS_ERROR

The XLinks in an IndoorGML file are wrong, the primal and the dual are not correctly linked. The schema validation
(.xsd) of IndoorGML does not validate this.

3.33 704 – PRIMAL_DUAL_ADJACENCIES_INCONSISTENT

The adjacency of IndoorGML cells in the primal and the dual are no consistent. Basically, if two 3-cells are adjacent
in the primal, are they also in the dual (do they have a dual edge)? The –overlap_tol influences this.

3.34 901 – INVALID_INPUT_FILE

Input file is not valid or corrupted. If a CityGML file, you can check it against the schema.

3.35 902 – EMPTY_PRIMITIVE

The input file contains empty primitives, eg an OBJ where to surfaces are defined, or a CompositeSolid in a
CityJSON file containing one empty Solid.

3.36 903 – WRONG_INPUT_PARAMETERS

The parameters used for the validation are not valid.

3.37 904 – FORMAT_NOT_SUPPORTED

It can be that certain versions of a supported format are not supported, eg v3.0 of CityGML is not.

3.38 999 – UNKNOWN_ERROR

If none of the above is suitable, which means something went (really) bad. If you see this error, please report it.

22 Chapter 3. Errors

http://geovalidation.bk.tudelft.nl/schemacitygml/
https://github.com/tudelft3d/val3dity/issues

CHAPTER 4

Definitions

The international standard ISO19107 provides definitions for the 3D primitives as used in GIS applications and the
“geo-world”. Because the aim is to represent all the possible real-world features, the 3D primitives are more complex
than that in other fields (where often-times a volumetric object is restricted to be a 2-manifold, and where inner rings
in surfaces are disallowed), or that of 3D objects in several commercial 3D GIS packages (where the 3D primitives are
simply not defined and where inner boundaries in surfaces and solids are disallowed).

4.1 ISO19107 primitives

The 3D primitives as defined in ISO19107 are a generalisation to 3D of the 2D ones and are as follows:

A 0D primitive is a GM_Point, a 1D a GM_Curve, a 2D a GM_Surface, and a 3D a GM_Solid. A d-dimensional
primitive is built with a set of (d-1)-dimensional primitives, eg a GM_Solid is formed by several GM_Surfaces,
which are formed of several GM_Curves, which are themselves formed of GM_Point.

Note: While the ISO19107 primitives do not need to be linear or planar (eg curves defined by mathematical functions
are allowed), val3dity uses the following restrictions (which are the same as the international standard CityGML and
most (all perhaps?) 3D GIS):

1. GM_Curves can only be linear;

2. GM_Surfaces can only be planar.

4.2 Aggregates & composites

Primitives can be combined into either aggregates or composites.

An aggregate is an arbitrary collection of primitives of the same dimensionality that is simply used to bundle together
geometries. GML (and CityGML) has classes for each dimensionality (Multi*). An aggregate does not prescribe

23

http://www.iso.org/iso/catalogue_detail.htm?csnumber=26012
https://www.citygml.org

CityJSON Documentation, Release 2.3.0

any topological relationships between the primitives, it is simply a list of primitives (ie they can overlap or be discon-
nected).

A composite of dimension d is a collection of d-dimensional primitives that form a d-manifold, which is a topological
space that is locally like a d-dimensional Euclidean space (R𝑑). The most relevant example in a GIS context is a
CompositeSurface: it is a 2-manifold, or, in other words, a surface embedded in R𝑑. An obvious example is the
surface of the Earth, for which near to every point the surrounding area is topologically equivalent to a plane.

4.3 Overview of 3D primitives handled

Observe that for a primitive to be valid, all its lower-dimensionality primitives have to be valid. For instance, a valid
Solid cannot have as one of its surfaces a Polygon having a self-intersection (which would make it invalid).

4.4 Polygon

A Polygon in the context of val3dity is always embedded in R𝑑, ie its vertices have (x, y, z) coordinates. To be
valid, it needs to fulfil the 6 assertions below, which are given on pages 27-28 of the Simple Features document.
These rules are verified by first projecting each Polygon to a plane, this plane is obtained in val3dity by least-square
adjustment of all the points of a Polygon. A Polygon must also be planar to be valid: its points (used for both the
exterior and interior rings) have to lie on a plane (see 203 – NON_PLANAR_POLYGON_DISTANCE_PLANE and 204
– NON_PLANAR_POLYGON_NORMALS_DEVIATION more information about this).

Some concrete examples of invalid polygons are shown below, and here are a few explanations:

• Each ring should be closed (𝑝11): its first and its last points should be the same.

• Each ring defining the exterior and interior boundaries should be simple, ie non-self-intersecting (𝑝1 and 𝑝10).
Notice that this prevents the existence of rings with zero-area (𝑝6), and of rings having two consecutive points
at the same location. It should be observed that the polygon 𝑝1 is not allowed (in a valid representation of the
polygon, the triangle should be represented as an interior boundary touching the exterior boundary).

24 Chapter 4. Definitions

http://portal.opengeospatial.org/files/?artifact_id=25355

CityJSON Documentation, Release 2.3.0

• The rings of a polygon should not cross (𝑝3, 𝑝7, 𝑝8 and 𝑝12) but may intersect at one tangent point (the interior
ring of 𝑝2 is a valid case, although 𝑝2 as a whole is not since the other interior ring is located outside the interior
one). More than one tangent point is allowed, as long as the interior of the polygon stays connected (see below).

• A polygon may not have cut lines, spikes or punctures (𝑝5 or 𝑝6); removing these is known as the regularisation
of a polygon (a standard point-set topology operation).

• The interior of every polygon is a connected point set (𝑝4).

• Each interior ring creates a new area that is disconnected from the exterior. Thus, an interior ring cannot be
located outside the exterior ring (𝑝2) or inside other interior rings (𝑝9).

4.5 MultiSurface

It is an arbitrary collection of Polygon. Validating a MultiSurface simply means that each Polygon is validated
individually; a MultiSurface is valid if all its Polygons are valid.

4.6 CompositeSurface

Besides that each Polygon must be individually valid, the Polygons forming a CompositeSurface are not allowed
to overlap and/or to be disjoint. Furthermore, if we store a CompositeSurface in a data structure, each edge is
guaranteed to have a maximum of two incident surfaces, and around each vertex the incident faces form one ‘umbrella’.

4.7 Solid

A CompositeSurface that is closed (ie it contains no ‘holes’, it is ‘watertight’) and orientable is referred to as a
“Shell”. Shells are used to define the boundaries of a Solid. In the figure above, the Solid has two boundaries: an
exterior one (the cube in grey) and one interior one (the cube in orange), which defines a void’ in the solid. A ‘‘Solid‘
can have an infinity of interior boundaries, or none. Observe that a cavity is not the same as a hole in a torus (a donut)
such as that in the figure below: it can be represented with one exterior boundary having a genus of 1 and no interior
shell. Interior boundaries in surfaces are possible, simple LOD1 buildings having for instance an inner yard require
them.

According to the ISO19107 specifications, the different boundaries of a solid are allowed to interact with each other,
but only under certain circumstances. Since there is no implementation specifications for 3D primitives, we have to
generalise the 2D assertions for the validity of a 2D polygon (see MultiSurface). Observe that all of them, except the
3rd, generalise directly to 3D since a point-set topology nomenclature is used. The only modifications needed are that,
in 3D, polygons become solids, rings become shells, and holes become cavities.

To further explain what the assertions are in 3D, the figure below shows 12 solids, some of them valid, some not; all
the statements below refer to these solids.

4.5. MultiSurface 25

CityJSON Documentation, Release 2.3.0

The first assertion means that a solid must be closed, or ‘watertight’ (even if it contains interior shells). The solid 𝑠1 is
thus not valid but 𝑠2 is since the hole in the top surface is ‘filled’ with other surfaces.

The second assertion implies that each shell must be simple (ie a 2-manifold).

The third assertion means that the boundaries of the shells can intersect each others, but the intersection between the
shells can only contain primitives of dimensionality 0 (vertices) and 1 (edges). If a surface or a volume is contained,
then the solid is not valid. The solid 𝑠3 is an example of a valid solid: it has two interior shells whose boundaries
intersect at one point (at the apexes of the tetrahedra), and the apex of one of the tetrahedra is coplanar with the 4
points forming one surface of the exterior shell. If the interior of the two interior shells intersects (as in 𝑠4) the solid
is not valid; this is also related to the sixth assertion stating that each cavity must define one connected component: if
the interior of two cavities are intersecting they define the same connected component. Notice also that 𝑠5 is not valid
since one surface of its cavity intersects with one surface of the exterior shell (they “share a surface”); 𝑠5 should be
represented with one single exterior shell (having a ‘dent’), and no interior shell.

The fourth assertion states that a shell is a 2-manifold and that no dangling pieces can exist (such as that of 𝑠6); it is
equivalent to the regularisation of a point-set in 3D.

The fifth assertion states that the interior of a solid must form a connected point-set (in 3D). Consider the solid 𝑠7, it is
valid since its interior is connected and it fulfils the other assertions; notice that it is a 2-manifold but that unlike other
solids in the figure (except 𝑠8) its genus) is 1. If we move the location of the triangular prism so that it touches the
boundary of the exterior shell (as in 𝑠8), then the solid becomes invalid since its interior is not connected anymore, and
also since its exterior shell is not simple anymore (2 edges have 4 incident planar faces, which is not 2-manifold). It is
also possible that the interior shell of a solid separates the solid into two parts: the interior shell of 𝑠9 (exterior shell is
not coloured for clarity) is a pyramid having four of its edges intersecting with the exterior shell, but no two surfaces
are shared, thus these interactions are allowed. However, the presence of the pyramid separates the interior of the solid
into two unconnected volumes (violating assertion 5); for both 𝑠8 and 𝑠9, the only possible valid representation is with
two different solids.

Notice also that, as for other primitives, for a solid to be valid all its lower-dimensionality primitives must be valid.
That is, each surface of the shells has to be valid. An example of an invalid surface would be one having a hole (an
inner ring) overlapping the exterior ring (see 𝑠10).

Furthermore, it should also be noticed that for a solid to be valid both its topology and its geometry should be valid.
A solid such as 𝑠11 is valid, but if the location of only one of its vertices is modified (for instance if the apex of the
pyramid of 𝑠11 is moved downwards to form 𝑠12) then it becomes invalid. Both 𝑠11 and 𝑠12 can be represented with a
graph having exactly the same topology (which is valid for both), but if we consider the geometry then the latter solid

26 Chapter 4. Definitions

http://en.wikipedia.org/wiki/Genus_(mathematics)

CityJSON Documentation, Release 2.3.0

is not valid since its exterior shell is not simple.

Lastly, the orientation of the polygons must be considered. In 2D, the only requirement for a polygon is that its exterior
ring must have the opposite orientation of that of its interior ring(s) (eg clockwise versus counterclockwise). In 3D, if
one polygon is used to construct a shell, its exterior ring must be oriented in such as way that, when viewed from the
outside of the shell, the points are ordered counterclockwise. See for instance this solid and the orientation of three of
its polygons (different colours).

In other words, the normal of the surface must point outwards if a right-hand system is used, ie when the ordering
of points follows the direction of rotation of the curled fingers of the right hand, then the thumb points towards the
outside. If the polygon has interior rings, then these have to be ordered clockwise.

4.8 MultiSolid

It is an arbitrary collection of Solids. Validating a MultiSolid simply means that each Solid is validated
individually; a MultiSolid is valid if all its Solids are valid.

4.9 CompositeSolid

Besides that each Solid must be individually valid, the Solids are not allowed to overlap and/or to be disjoint.

A CompositeSolid, formed by the Solids A and B, should fulfil the following two properties:

1. their interior should not overlap (𝐴𝑜 ∩𝐵𝑜 = ∅)

2. their union should form one Solid (𝐴 ∪𝐵 = one Solid)

val3dity can validate these with a user-defined tolerance (see the option –overlap_tol), to ignore small overlaps/gaps
that often arise in practice.

4.8. MultiSolid 27

CityJSON Documentation, Release 2.3.0

28 Chapter 4. Definitions

CHAPTER 5

FAQ

• Who validates the validator, huh?

• How to interpret the report?

• I get many errors 203 and 204, but my planes look planar to me. Why is that?

• I don’t see all the errors in my solid

• I’m sure my 3D primitive is valid, but the validator says that something is wrong

• Do you validate the topological relationships between the solids?

• The IDs for the shells and surfaces in the report, are they 0-based or 1-based?

• Where can I get files containing Solids or CompositeSolid?

5.1 Who validates the validator, huh?

We wrote a comprehensive suite of tests using the pytest python framework and a custom setup. This tests, among
many others, the following:

• Empty files and geometries, invalid input file formats. However, val3dity does not validate the schema of the
input.

• All the error cases listed in Errors.

• Various valid geometries and boundary conditions.

• Command-line user input.

You can read more about the details, or check the complete list of tested geometries

29

https://github.com/tudelft3d/val3dity/blob/master/tests/README.md
https://github.com/tudelft3d/val3dity/blob/master/data/test_metadata.yml

CityJSON Documentation, Release 2.3.0

5.2 How to interpret the report?

With the option --report a JSON report is output.

The report is rather simple, and lists errors at 3 levels:

1. errors with the input files (errors 9xx)

2. errors with the features, eg Buildings in CityJSON (errors 6xx and 7xx)

3. errors with the geometries (errors 1xx – 5xx)

You can navigate this report with a JSON browser (eg drag it in Firefox) or by loading it to the val3dity report browser:

There you get an overview of the statistics per features and primitives, and each feature has its primitives and errors as
children.

30 Chapter 5. FAQ

http://geovalidation.bk.tudelft.nl/val3dity/browse/

CityJSON Documentation, Release 2.3.0

5.3 I get many errors 203 and 204, but my planes look planar to me.
Why is that?

This is a very common error, actually 203 – NON_PLANAR_POLYGON_DISTANCE_PLANE is the most common
error for all the files so far uploaded to our web application.

Read carefully the explanations of the errors 203 – NON_PLANAR_POLYGON_DISTANCE_PLANE and 204 –
NON_PLANAR_POLYGON_NORMALS_DEVIATION.

A surface is first check for error 203, if valid then error 204 is checked. By definition, if an error 204 is reported then
all the vertices are within 1cm (tolerance you used), thus you wouldn’t be able to visualise them. That usually means
that you have vertices that are very close (say 0.1mm) and thus it’s easy to get a large deviation (say 80degree; the
report contains the deviation).

5.4 I don’t see all the errors in my solid

It’s normal: as shown in the figure below, a solid is validated hierarchically, ie first every surface (a polygon embedded
in 3D) is validated in 2D (by projecting it to a plane), then every shell is validated, and finally the interactions between
the shells are analysed to verify whether the solid is valid. If at one stage there are errors, then the validation stops
to avoid “cascading errors”. So if you get the error 203 – NON_PLANAR_POLYGON_DISTANCE_PLANE, then fix
it and re-run the validator again. That does mean that you might have to upload your file and get it validated several
times—if that becomes too tedious we strongly suggest you to download the code, compile it and run it locally (it’s
open-source and free to use).

5.5 I’m sure my 3D primitive is valid, but the validator says that some-
thing is wrong

It’s possible that there are bugs in val3dity. Please report the issue and provide the following:

1. the JSON report (use option --report_json)

2. (a link to) the input file you used

3. which platform you use, and whether you compiled it yourself or used the web-application

5.6 Do you validate the topological relationships between the solids?

If these solids are part of a CompositeSolid then yes, otherwise no. We do verify whether two BuildingParts
forming a Building overlap though.

We however plan to offer in the future this for all primitives/buildings in a file, so that one can verify whether two
different buildings overlap for instance.

5.7 The IDs for the shells and surfaces in the report, are they 0-based
or 1-based?

0-based.

5.3. I get many errors 203 and 204, but my planes look planar to me. Why is that? 31

http://geovalidation.bk.tudelft.nl/val3dity/stats
https://github.com/tudelft3d/val3dity
https://github.com/tudelft3d/val3dity
https://github.com/tudelft3d/val3dity/issues

CityJSON Documentation, Release 2.3.0

5.8 Where can I get files containing Solids or CompositeSolid?

• www.cityjson.org has many files

• in the folder /data/ of the GitHub repository of val3dity there are many examples of files containing different
primitives, and in different formats.

• www.indoorgml.net has a few files

• overview of cities with 3D city models

32 Chapter 5. FAQ

https://www.cityjson.org/datasets/
https://github.com/tudelft3d/val3dity
http://indoorgml.net/resources/
https://3d.bk.tudelft.nl/opendata/opencities/

CHAPTER 6

Contact

val3dity is maintained by Hugo Ledoux and the 3D geoinformation group at TU Delft.

For any questions/issues/errors, please open an issue on GitHub

33

https://3d.bk.tudelft.nl/hledoux
https://3d.bk.tudelft.nl
https://github.com/tudelft3d/val3dity/issues

	Installation
	Windows executable
	macOS & Linux: you need to compile
	Web-application
	Using val3dity as a library
	Python bindings

	Using val3dity
	How to run val3dity?
	Accepted input
	How are 3D primitives validated?
	Options for the validation

	Errors
	101 – TOO_FEW_POINTS
	102 – CONSECUTIVE_POINTS_SAME
	103 – RING_NOT_CLOSED
	104 – RING_SELF_INTERSECTION
	201 – INTERSECTION_RINGS
	202 – DUPLICATED_RINGS
	203 – NON_PLANAR_POLYGON_DISTANCE_PLANE
	204 – NON_PLANAR_POLYGON_NORMALS_DEVIATION
	205 – POLYGON_INTERIOR_DISCONNECTED
	206 – INNER_RING_OUTSIDE
	207 – INNER_RINGS_NESTED
	208 – ORIENTATION_RINGS_SAME
	300 – NOT_VALID_2_MANIFOLD
	301 – TOO_FEW_POLYGONS
	302 – SHELL_NOT_CLOSED
	303 – NON_MANIFOLD_CASE
	305 – MULTIPLE_CONNECTED_COMPONENTS
	306 – SHELL_SELF_INTERSECTION
	307 – POLYGON_WRONG_ORIENTATION
	401 – INTERSECTION_SHELLS
	402 – DUPLICATED_SHELLS
	403 – INNER_SHELL_OUTSIDE
	404 – SOLID_INTERIOR_DISCONNECTED
	405 – WRONG_ORIENTATION_SHELL
	501 – INTERSECTION_SOLIDS
	502 – DUPLICATED_SOLIDS
	503 – DISCONNECTED_SOLIDS
	601 – BUILDINGPARTS_OVERLAP
	609 – CITYOBJECT_HAS_NO_GEOMETRY
	701 – CELLS_OVERLAP
	702 – DUAL_VERTEX_OUTSIDE_CELL
	703 – PRIMAL_DUAL_XLINKS_ERROR
	704 – PRIMAL_DUAL_ADJACENCIES_INCONSISTENT
	901 – INVALID_INPUT_FILE
	902 – EMPTY_PRIMITIVE
	903 – WRONG_INPUT_PARAMETERS
	904 – FORMAT_NOT_SUPPORTED
	999 – UNKNOWN_ERROR

	Definitions
	ISO19107 primitives
	Aggregates & composites
	Overview of 3D primitives handled
	Polygon
	MultiSurface
	CompositeSurface
	Solid
	MultiSolid
	CompositeSolid

	FAQ
	Who validates the validator, huh?
	How to interpret the report?
	I get many errors 203 and 204, but my planes look planar to me. Why is that?
	I don’t see all the errors in my solid
	I’m sure my 3D primitive is valid, but the validator says that something is wrong
	Do you validate the topological relationships between the solids?
	The IDs for the shells and surfaces in the report, are they 0-based or 1-based?
	Where can I get files containing Solids or CompositeSolid?

	Contact

